Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 507
Filter
1.
Mater Sociomed ; 35(2): 113-117, 2023.
Article in English | MEDLINE | ID: mdl-37701340

ABSTRACT

Background: One of the problems in modern obstetrics is how to identify and select pregnant women who are most likely to give premature birth. In the last ten years, due to false-positive test results, i.e., tests with low positive predictive values, there is an increase in unnecessary hospitalization days as well as unnecessary therapy. The probability of preterm birth is 25% in a population of pregnant women with symptoms of preterm birth. Objective: The aim was to analyze diagnostic accuracy of tests for the purpose of predicting premature births in< 37th and <34th week of pregnancy.Incidence of preterm births in < 37th week of pregnancy was 28%, while the incidence of preterm births up until 34th week of pregnancy, was < 8%. Methods: We included two groups of pregnant women in a prospective study; one group with the symptoms of threatening preterm birth between 22nd and 37th week of pregnancyand the other one of the same gestation period with no symptoms. Results: Each pregnant woman underwent test for placental alphamicroglobulin-1, cervical length screening, cervical sampling for microbiological analysis, blood sampling for IL6 and CRP analysis. There were 16% of preterm births, up until 7 days from hospitalization, and they were all PAMG-1 positive; There is 75% of preterm births if PAMG-1 is positive with cervical length under 25mm. Combining tests, we reached the best predictive accuracy with positive PAMG-1 test, cervical length under 15mm along with the increase of CRP values above 15.96%. Conclusion: Total number of hospitalization days was 29% with preterm births up to 71% with full term births regardless the symptomatology, which justifies further studies towards releasing the pressure from the health care system and from doctors as well in the process of reaching a decision on treatment of pregnant women with the signs of preterm birth.

2.
J Assist Reprod Genet ; 40(7): 1661-1668, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247099

ABSTRACT

PURPOSE: Despite the success of ICSI in treating severe male factor infertile patients, total fertilization failure (FF) still occurs in around 1-3% of ICSI cycles. To overcome FF, the use of calcium ionophores has been proposed to induce oocyte activation and restore fertilization rates. However, assisted oocyte activation (AOA) protocols and ionophores vary between laboratories, and the morphokinetic development underlying AOA remains understudied. METHODS: A prospective single-center cohort study involving 81 in vitro matured metaphase-II oocytes from 66 oocyte donation cycles artificially activated by A23187 (GM508 CultActive, Gynemed) (n=42) or ionomycin (n=39). Parthenogenesis was induced, and morphokinetic parameters (tPNa, tPNf, t2-t8, tSB, and tB) were compared between the 2 study groups and a control group comprising 39 2PN-zygotes from standard ICSI cycles. RESULTS: Ionomycin treatment resulted in higher activation rates compared to A23187 (38.5% vs 23.8%, p=0.15). Importantly, none of the A23187-activated parthenotes formed blastocysts. When evaluating the morphokinetic dynamics between the two ionophores, we found that tPNa and tPNf were significantly delayed in the group treated by A23187 (11.84 vs 5.31, p=0.002 and 50.15 vs 29.69, p=0.005, respectively). t2 was significantly delayed in A23187-activated parthenotes when compared to the double heterologous control embryo group. In contrast, the morphokinetic development of ionomycin-activated parthenotes was comparable to control embryos (p>0.05). CONCLUSION: Our results suggest that A23187 leads to lower oocyte activation rates and profoundly affects morphokinetic timings and preimplantation development in parthenotes. Despite our limited sample size and low parthenote competence, standardization and further optimization of AOA protocols may allow wider use and improved outcomes for FF cycles.


Subject(s)
Oocytes , Sperm Injections, Intracytoplasmic , Male , Animals , Ionomycin/pharmacology , Ionophores/pharmacology , Calcimycin/pharmacology , Cohort Studies , Sperm Injections, Intracytoplasmic/methods
3.
Eur Rev Med Pharmacol Sci ; 27(7): 3159-3170, 2023 04.
Article in English | MEDLINE | ID: mdl-37070919

ABSTRACT

OBJECTIVE: Healthcare professionals lack the knowledge about the impact of formulations on treatment effectiveness. This is further complicated by the existence of dietary supplements containing the same active pharmaceutical ingredients (API) as drug formulations [e.g., alpha-lipoic acid (ALA)], to which the strict formulation testing requirements do not apply. This research aimed to compare ALA-containing drugs and dietary supplements through the determination of uniformity of content, disintegration time and dissolution rates. MATERIALS AND METHODS: A total of seven different ALA formulations (5 dietary supplements, 2 drugs) were tested for uniformity of content, disintegration time and dissolution rates. All tests were performed in accordance with the 10th European Pharmacopoeia. ALA was determined spectrophotometrically. RESULTS: Uniformity of content testing revealed larger variations of ALA content in three formulations of dietary supplements. Dissolution curves generated at 50 and 100 rpm differed significantly. Testing requirements were met only by one dietary supplement at 50 rpm, and one drug and two dietary supplements at 100 rpm. Disintegration testing showed limited impact on the release kinetic of ALA, as opposed to formulation type. CONCLUSIONS: Considering the lack of regulation on dietary supplement formulations and the variable success of them conforming to pharmacopoeial requirements, it is an imperative for stricter regulations on the dietary supplements' formulations to be imposed globally.


Subject(s)
Thioctic Acid , Humans , Dietary Supplements
4.
Eur J Med Genet ; 66(1): 104674, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470558

ABSTRACT

Retinoblastoma is the most common paediatric neoplasm of the retina, and one of the earliest model of cancer genetics since the identification of the master tumour suppressor gene RB1. Tumorigenesis has been shown to be driven by pathogenic variants of the RB1 locus, but also genomic and epigenomic alterations outside the locus. The increasing knowledge on this "mutational landscape" is used in current practice for precise genetic testing and counselling. Novel methods provide access to pre-therapeutic tumour DNA, by isolating cell-free DNA from aqueous humour or plasma. This is expected to facilitate assessment of the constitutional status of RB1, to provide an early risk stratification using molecular prognostic markers, to follow the response to the treatment in longitudinal studies, and to predict the response to targeted therapies. The aim of this review is to show how molecular genetics of retinoblastoma drives diagnosis, treatment, monitoring of the disease and surveillance of the patients and relatives. We first recap the current knowledge on retinoblastoma genetics and its use in every-day practice. We then focus on retinoblastoma subgrouping at the era of molecular biology, and the expected input of cell-free DNA in the field.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Child , Humans , Retinoblastoma/genetics , Genes, Retinoblastoma , Mutation , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Patient Care , DNA Mutational Analysis/methods
5.
BMC Med Res Methodol ; 22(1): 301, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36424556

ABSTRACT

BACKGROUND: Mediation analysis aims at estimating to what extent the effect of an exposure on an outcome is explained by a set of mediators on the causal pathway between the exposure and the outcome. The total effect of the exposure on the outcome can be decomposed into an indirect effect, i.e. the effect explained by the mediators jointly, and a direct effect, i.e. the effect unexplained by the mediators. However finer decompositions are possible in presence of independent or sequential mediators. METHODS: We review four statistical methods to analyse multiple sequential mediators, the inverse odds ratio weighting approach, the inverse probability weighting approach, the imputation approach and the extended imputation approach. These approaches are compared and implemented using a case-study with the aim to investigate the mediating role of adverse reproductive outcomes and infant respiratory infections in the effect of maternal pregnancy mental health on infant wheezing in the Ninfea birth cohort. RESULTS: Using the inverse odds ratio weighting approach, the direct effect of maternal depression or anxiety in pregnancy is equal to a 59% (95% CI: 27%,94%) increased prevalence of infant wheezing and the mediated effect through adverse reproductive outcomes is equal to a 3% (95% CI: -6%,12%) increased prevalence of infant wheezing. When including infant lower respiratory infections in the mediation pathway, the direct effect decreases to 57% (95% CI: 25%,92%) and the indirect effect increases to 5% (95% CI: -5%,15%). The estimates of the effects obtained using the weighting and the imputation approaches are similar. The extended imputation approach suggests that the small joint indirect effect through adverse reproductive outcomes and lower respiratory infections is due entirely to the contribution of infant lower respiratory infections, and not to an increased prevalence of adverse reproductive outcomes. CONCLUSIONS: The four methods revealed similar results of small mediating role of adverse reproductive outcomes and early respiratory tract infections in the effect of maternal pregnancy mental health on infant wheezing. The choice of the method depends on what is the effect of main interest, the type of the variables involved in the analysis (binary, categorical, count or continuous) and the confidence in specifying the models for the exposure, the mediators and the outcome.


Subject(s)
Respiratory Sounds , Respiratory Tract Infections , Female , Humans , Infant , Pregnancy , Causality , Mediation Analysis , Odds Ratio
6.
Eur Rev Med Pharmacol Sci ; 26(14): 5098-5102, 2022 07.
Article in English | MEDLINE | ID: mdl-35916806

ABSTRACT

BACKGROUND: Miliary sarcoidosis is a rare form of sarcoidosis characterized by numerous miliary-like micronodules dispersed throughout the lungs. It has been documented in less than 1% of all sarcoidosis cases. We first described a rare case of miliary sarcoidosis and then conducted a literature review on the subject. CASE PRESENTATION: A 51-year-old male complained about a progressive loss of appetite, significant weight loss, occasional night sweats, and fatigue. After a thorough clinical exploration, a differential diagnosis of miliary lung disease was suspected - miliary tuberculosis, fungal infection, metastatic pulmonary carcinoma, or sarcoidosis. High-resolution chest computed tomography revealed bilateral diffuse micronodules with mediastinal lymphadenopathy. Histopathological analysis of transbronchial bioptic tissue identified non-caseating epithelioid granulomas, while no malignant cells were found. Lung tuberculosis and fungal infections were excluded. The levels of angiotensin-converting enzyme in the blood, as well as serum's and 24-hour urine calcium levels, were elevated. After a multidisciplinary discussion, the diagnosis of miliary pulmonary sarcoidosis was established. The patient was treated with prednisone for a total of 9 months, with full clinical and radiological recovery. Using PubMed, we also conducted a review of the literature on this topic and discovered only a few case reports of patients with miliary sarcoidosis, with just one systematic review accessible. The key findings of studies investigating patients diagnosed with miliary sarcoidosis are tabularly displayed. CONCLUSIONS: Miliary sarcoidosis is an uncommon type of pulmonary sarcoidosis that can mimic several entities that manifest as miliary nodules. Most patients require treatment since it can have a significant impact on lung function.


Subject(s)
Sarcoidosis, Pulmonary , Sarcoidosis , Tuberculosis, Miliary , Tuberculosis, Pulmonary , Humans , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Sarcoidosis/diagnosis , Sarcoidosis/drug therapy , Sarcoidosis, Pulmonary/diagnosis , Sarcoidosis, Pulmonary/drug therapy , Sarcoidosis, Pulmonary/pathology , Tuberculosis, Miliary/diagnosis , Tuberculosis, Miliary/drug therapy , Tuberculosis, Miliary/pathology
7.
Eur Rev Med Pharmacol Sci ; 26(13): 4721-4734, 2022 07.
Article in English | MEDLINE | ID: mdl-35856364

ABSTRACT

OBJECTIVE: Satureja montana L. is traditionally used as spice and for treatment various diseases. Many studies have shown antioxidative effect of Satureja species. Our thorough study in an animal model was performed through measurement of biochemical parameters in the serum, histology analysis and determination of oxidative status of the liver, coupled with investigation of extraction solvent selection using principal component analysis (PCA). MATERIALS AND METHODS: Winter savory dry extract (500 mg/kg) dispersion and saline solution were given to Wistar rats for 7 days after exposure to oxidative stress using toxic doses of paracetamol (600 mg/kg). Rats were sacrificed, after which a complete autopsy was performed, the blood obtained was used to determine biochemical parameters, and the liver was sliced for histological analysis and determination of oxidative stress enzymes. RESULTS: Indicators of hepatic and kidney functions, as well as the concentration of oxidative stress enzymes, were statistically significantly lower in animals treated with Satureja montana L. extract compared to the paracetamol group alone before the toxic dose of paracetamol. Liver enzymes were unaltered by pre-treatment with the extract, but the level of lipid peroxidase was decreased, and the level of catalase, glutathione reductase and superoxide dismutase increased proving in vivo antioxidant effect. In addition, the number of inflammatory cells is decreased coupled with activity of CYP2E1 enzymes proving hepatoprotective effect. CONCLUSIONS: Satureja montana L. extract in our research has shown hepatoprotective, anti-inflammatory and antioxidative effect. PCA analyses indicated that extraction mediums have a great impact on the antioxidative effect.


Subject(s)
Satureja , Acetaminophen/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Lipid Peroxidation , Liver/metabolism , Montana , Oxidative Stress , Plant Extracts/pharmacology , Principal Component Analysis , Rats , Rats, Wistar , Solvents/metabolism , Solvents/pharmacology
8.
Nanotechnology ; 33(34)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35580563

ABSTRACT

In this study, we have investigated the effect of thickness on the structural and optical properties of copper (Cu) helical nanostructures. Thin films with thicknesses of 160 nm, 280 nm, 450 nm, and 780 nm were obtained by e-beam glancing angle deposition. The morphology and the microstructure were studied by field emission scanning electron microscopy, x-ray diffraction and transmission electron microscopy, while for the optical analysis measurements spectroscopic ellipsometry was used. The results show that the deposited structures are porous with nanometer-sized crystallites preferentially oriented along (111) planes, as well as that the diameter of the helices increases with thickness. Detailed analyses of optical properties have demonstrated that the dielectric function of Cu structures is greatly influenced by the films thicknesses. With increasing thickness from 160 nm to 780 nm, the surface plasmon resonance peak was shifted from 1.31 eV to 1.05 eV, which was correlated with the growth mechanism and the size of deposited nanostructures.

9.
Hum Reprod ; 36(5): 1242-1252, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33609360

ABSTRACT

STUDY QUESTION: What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER: POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY: Clustered regularly interspaced short palindromic repeats-CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION: The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain-B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION: One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS: Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S): The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , In Vitro Oocyte Maturation Techniques , Animals , Blastocyst , CRISPR-Cas Systems , Embryonic Development/genetics , Female , Genes, Homeobox , Humans , Male , Mice , Octamer Transcription Factor-3/genetics , Pregnancy
10.
EJNMMI Res ; 10(1): 142, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33226505

ABSTRACT

BACKGROUND: Deriving individual tumor genomic characteristics from patient imaging analysis is desirable. We explore the predictive value of 2-[18F]FDG uptake with regard to the KRAS mutational status of colorectal adenocarcinoma liver metastases (CLM). METHODS: 2-[18F]FDG PET/CT images, surgical pathology and molecular diagnostic reports of 37 patients who underwent PET/CT-guided biopsy of CLM were reviewed under an IRB-approved retrospective research protocol. Sixty CLM in 39 interventional PET scans of the 37 patients were segmented using two different auto-segmentation tools implemented in different commercially available software packages. PET standard uptake values (SUV) were corrected for: (1) partial volume effect (PVE) using cold wall-corrected contrast recovery coefficients derived from phantom spheres with variable diameter and (2) variability of arterial tracer supply and variability of uptake time after injection until start of PET scan derived from the tumor-to-blood standard uptake ratio (SUR) approach. The correlations between the KRAS mutational status and the mean, peak and maximum SUV were investigated using Student's t test, Wilcoxon rank sum test with continuity correction, logistic regression and receiver operation characteristic (ROC) analysis. These correlation analyses were also performed for the ratios of the mean, peak and maximum tumor uptake to the mean blood activity concentration at the time of scan: SURMEAN, SURPEAK and SURMAX, respectively. RESULTS: Fifteen patients harbored KRAS missense mutations (KRAS+), while another 3 harbored KRAS gene amplification. For 31 lesions, the mutational status was derived from the PET/CT-guided biopsy. The Student's t test p values for separating KRAS mutant cases decreased after applying PVE correction to all uptake metrics of each lesion and when applying correction for uptake time variability to the SUR metrics. The observed correlations were strongest when both corrections were applied to SURMAX and when the patients harboring gene amplification were grouped with the wild type: p ≤ 0.001; ROC area under the curve = 0.77 and 0.75 for the two different segmentations, respectively, with a mean specificity of 0.69 and sensitivity of 0.85. CONCLUSION: The correlations observed after applying the described corrections show potential for assigning probabilities for the KRAS missense mutation status in CLM using 2-[18F]FDG PET images.

11.
Hum Reprod ; 35(7): 1562-1577, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32613230

ABSTRACT

STUDY QUESTION: Can pronuclear transfer (PNT) or maternal spindle transfer (ST) be applied to overcome poor embryo development associated with advanced maternal age or early embryo arrest in a mouse model? SUMMARY ANSWER: Both PNT and ST may have the potential to restore embryonic developmental potential in a mouse model of reproductive ageing and embryonic developmental arrest. WHAT IS KNOWN ALREADY: Germline nuclear transfer (NT) techniques, such as PNT and ST, are currently being applied in humans to prevent the transmission of mitochondrial diseases. Yet, there is also growing interest in the translational use of NT for treating infertility and improving IVF outcomes. Nevertheless, direct scientific evidence to support such applications is currently lacking. Moreover, it remains unclear which infertility indications may benefit from these novel assisted reproductive technologies. STUDY DESIGN, SIZE, DURATION: We applied two mouse models to investigate the potential of germline NT for overcoming infertility. Firstly, we used a model of female reproductive ageing (B6D2F1 mice, n = 155), with ages ranging from 6 to 8 weeks (young), 56 (aged) to 70 weeks (very-aged), corresponding to a maternal age of <30, ∼36 and ∼45 years in humans, respectively. Secondly, we used NZB/OlaHsd female mice (7-14 weeks, n = 107), as a model of early embryo arrest. This mouse strain exhibits a high degree of two-cell block. Metaphase II (MII) oocytes and zygotes were retrieved following superovulation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian reserve was assessed by histological analysis in the reproductive-aged mice. Mitochondrial membrane potential (△Ψm) was measured by JC-1 staining in MII oocytes, while spindle-chromosomal morphology was examined by confocal microscopy. Reciprocal ST and PNT were performed by transferring the meiotic spindle or pronuclei (PN) from unfertilised or fertilised oocytes (after ICSI) to enucleated oocytes or zygotes between aged or very-aged and young mice. Similarly, NT was also conducted between NZB/OlaHsd (embryo arrest) and B6D2F1 (non-arrest control) mice. Finally, the effect of cytoplasmic transfer (CT) was examined by injecting a small volume (∼5%) of cytoplasm from the oocytes/zygotes of young (B6D2F1) mice to the oocytes/zygotes of aged or very-aged mice or embryo-arrest mice. Overall, embryonic developmental rates of the reconstituted PNT (n = 572), ST (n = 633) and CT (n = 336) embryos were assessed to evaluate the efficiency of these techniques. Finally, chromosomal profiles of individual NT-generated blastocysts were evaluated using next generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to young mice, the ovarian reserve in aged and very-aged mice was severely diminished, reflected by a lower number of ovarian follicles and a reduced number of ovulated oocytes (P < 0.001). Furthermore, we reveal that the average △Ψm in both aged and very-aged mouse oocytes was significantly reduced compared to young mouse oocytes (P < 0.001). In contrast, the average △Ψm in ST-reconstructed oocytes (very-aged spindle and young cytoplast) was improved in comparison to very-aged mouse oocytes (P < 0.001). In addition, MII oocytes from aged and very-aged mice exhibited a higher rate of abnormalities in spindle assembly (P < 0.05), and significantly lower fertilisation (60.7% and 45.3%) and blastocyst formation rates (51.4% and 38.5%) following ICSI compared to young mouse oocytes (89.7% and 87.3%) (P < 0.001). Remarkably, PNT from zygotes obtained from aged or very-aged mice to young counterparts significantly improved blastocyst formation rates (74.6% and 69.2%, respectively) (P < 0.05). Similarly, both fertilisation and blastocyst rates were significantly increased after ST between aged and young mice followed by ICSI (P < 0.05). However, we observed no improvement in embryo development rates when performing ST from very-aged to young mouse oocytes following ICSI (P > 0.05). In the second series of experiments, we primarily confirmed that the majority (61.8%) of in vivo zygotes obtained from NZB/OlaHsd mice displayed two-cell block during in vitro culture, coinciding with a significantly reduced blastocyst formation rate compared to the B6D2F1 mice (13.5% vs. 90.7%; P < 0.001). Notably, following the transfer of PN from the embryo-arrest (NZB/OlaHsd) zygotes to enucleated non-arrest (B6D2F1) counterparts, most reconstructed zygotes developed beyond the two-cell stage, leading to a significantly increased blastocyst formation rate (89.7%) (P < 0.001). Similar findings were obtained after implementing ST between NZB/OlaHsd and B6D2F1 mice, followed by ICSI. Conversely, the use of CT did not improve embryo development in reproductive-age mice nor in the embryo-arrest mouse model (P > 0.05). Surprisingly, chromosomal analysis revealed that euploidy rates in PNT and ST blastocysts generated following the transfer of very-aged PN to young cytoplasts and very-aged spindles to young cytoplasts were comparable to ICSI controls (with young mouse oocytes). A high euploidy rate was also observed in the blastocysts obtained from either PNT or ST between young mice. Conversely, the transfer of young PN and young spindles into very-aged cytoplasts led to a higher rate of chromosomal abnormalities in both PNT and ST blastocysts. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The limited number of blastocysts analysed warrants careful interpretation. Furthermore, our observations should be cautiously extrapolated to humans given the inherent differences between mice and women in regards to various biological processes, including centrosome inheritance. The findings suggest that ST or PNT procedures may be able to avoid aneuploidies generated during embryo development, but they are not likely to correct aneuploidies already present in some aged MII oocytes. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first study to evaluate the potential of PNT and ST in the context of advanced maternal age and embryonic developmental arrest in a mouse model. Our data suggest that PNT, and to a lesser extent ST, may represent a novel reproductive strategy to restore embryo development for these indications. STUDY FUNDING/COMPETING INTEREST(S): M.T. is supported by grants from the China Scholarship Council (CSC) (Grant no. 201506160059) and the Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF) (Grant no. 01SC2916 and no. 01SC9518). This research is also supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051017N, G051516N and G1507816N). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Embryonic Development , Nuclear Transfer Techniques , Animals , Blastocyst , China , Female , Maternal Age , Mice , Oocytes
12.
Lupus ; 29(5): 505-508, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32041501

ABSTRACT

Myocardial infarction with non-obstructive coronary arteries (MINOCA) is a recently described, clinically significant entity, with prevalence rates ranging from 1% to 14% and a mean of 6% of all patients with myocardial infarction. Antiphospholipid syndrome (APS; Hughes syndrome) is characterized by the presence of antiphospholipid antibodies associated with thrombosis (arterial and/or venous) and/or pregnancy morbidity and could be the cause of MINOCA. Data on genetic predisposition to APS are scarce. The present study describes a unique case of monozygotic twin brothers who, at a young age, developed the same clinical presentation of APS. The diagnosis of APS was later confirmed, along with a diagnosis of systemic lupus erythematosus in one brother.


Subject(s)
Antiphospholipid Syndrome/diagnosis , Coronary Artery Disease/etiology , Lupus Erythematosus, Systemic/diagnosis , Myocardial Infarction/etiology , Twins, Monozygotic , Adult , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/complications , Coronary Artery Disease/pathology , Humans , Lupus Erythematosus, Systemic/complications , Male , Myocardial Infarction/pathology
13.
Mol Hum Reprod ; 25(12): 797-810, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31651030

ABSTRACT

Prevention of mitochondrial DNA (mtDNA) diseases may currently be possible using germline nuclear transfer (NT). However, scientific evidence to compare efficiency of different NT techniques to overcome mtDNA diseases is lacking. Here, we performed four types of NT, including first or second polar body transfer (PB1/2T), maternal spindle transfer (ST) and pronuclear transfer (PNT), using NZB/OlaHsd and B6D2F1 mouse models. Embryo development was assessed following NT, and mtDNA carry-over levels were measured by next generation sequencing (NGS). Moreover, we explored two novel protocols (PB2T-a and PB2T-b) to optimize PB2T using mouse and human oocytes. Chromosomal profiles of NT-generated blastocysts were evaluated using NGS. In mouse, our findings reveal that only PB2T-b successfully leads to blastocysts. There were comparable blastocyst rates among PB1T, PB2T-b, ST and PNT embryos. Furthermore, PB1T and PB2T-b had lower mtDNA carry-over levels than ST and PNT. After extrapolation of novel PB2T-b to human in vitro matured (IVM) oocytes and in vivo matured oocytes with smooth endoplasmic reticulum aggregate (SERa) oocytes, the reconstituted embryos successfully developed to blastocysts at a comparable rate to ICSI controls. PB2T-b embryos generated from IVM oocytes showed a similar euploidy rate to ICSI controls. Nevertheless, our mouse model with non-mutated mtDNAs is different from a mixture of pathogenic and non-pathogenic mtDNAs in a human scenario. Novel PB2T-b requires further optimization to improve blastocyst rates in human. Although more work is required to elucidate efficiency and safety of NT, our study suggests that PBT may have the potential to prevent mtDNA disease transmission.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Diseases/prevention & control , Mitochondrial Replacement Therapy/methods , Nuclear Transfer Techniques , Polar Bodies/transplantation , Animals , Blastocyst/cytology , Endoplasmic Reticulum, Smooth/physiology , Humans , Mice , Mitochondria/genetics , Mitochondrial Diseases/genetics , Oocytes/growth & development , Oocytes/transplantation
14.
Hum Reprod Open ; 2019(1): hoy024, 2019.
Article in English | MEDLINE | ID: mdl-30895264

ABSTRACT

STUDY QUESTION: How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER: Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY: Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN SIZE DURATION: This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS SETTING METHODS: The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE: The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS REASONS FOR CAUTION: This is a non-systematic review of current literature. Some references may have escaped the experts' analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS: The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTERESTS: ESHRE provided funding for the authors' on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation-Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: Not applicable.ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.

15.
Hum Reprod ; 34(4): 758-769, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30838420

ABSTRACT

STUDY QUESTION: What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-implantation outcomes in vitro? STUDY ANSWER: The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a 0% false positive and false negative rate. WHAT IS ALREADY KNOWN: Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a proportion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes. Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development. STUDY DESIGN, SIZE, DURATION: A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73). Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26 were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent trophectoderm (TE) biopsy prior to extended culture. PARTICIPANTS/MATERIALS, SETTING, METHODS: We applied established culture protocols to generate embryo outgrowths. Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more portions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing (NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later development. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with trisomies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concordance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered, accuracy increases to 100%, with a 0% false positive and false negative rate. LIMITATIONS REASONS FOR CAUTION: The inherent limitations of extended in vitro culture, particularly when modelling critical developmental milestones, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings echo current prenatal testing data and support the high clinical predictive value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing technical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism. STUDY FUNDING, COMPETING INTEREST(S): This research is funded by the Ghent University Special Research Fund (BOF01D08114) awarded to M.P., the Research Foundation-Flanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-van't Hoogerhuijs Stichting awarded to S.M.C.d.S.L. We thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Aneuploidy , Embryo Culture Techniques/methods , Embryo Implantation/genetics , Genetic Testing/methods , Mosaicism/embryology , Preimplantation Diagnosis/methods , Adult , Biopsy/methods , Blastocyst/metabolism , Blastocyst/pathology , Data Accuracy , Female , High-Throughput Nucleotide Sequencing , Humans , Optical Imaging , Pregnancy , Young Adult
16.
J Endocrinol Invest ; 42(10): 1171-1180, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30843173

ABSTRACT

PURPOSE: Thyroid hormones are essential for the normal function of almost all human tissues, and have critical roles in metabolism, differentiation and growth. Free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels are under strong genetic influence; however, most of the heritability is yet unexplained. METHODS: In order to identify novel loci associated with fT3, fT4 and TSH serum levels we performed a genome-wide meta-analysis of 7 411 206 polymorphisms in up to 1731 euthyroid individuals from three Croatian cohorts from Dalmatia region: two genetically isolated island populations and one mainland population. Additionally, we also performed a bivariate analysis of fT3 and fT4 levels. RESULTS: The EPHB2 gene variant rs67142165 reached genome-wide significance for association with fT3 plasma levels (P = 9.27 × 10-9) and its significance was confirmed in bivariate analysis (P = 9.72 × 10-9). We also found a genome-wide significant association for variant rs13037502 upstream of the PTPN1 gene and TSH plasma levels (P = 1.67 × 10-8). CONCLUSION: We identified a first genome-wide significant variant associated with fT3 plasma levels, as well as a novel locus associated with TSH plasma levels. These findings are biologically relevant and enrich our knowledge about the genetic basis of pituitary-thyroid axis function.


Subject(s)
Genetic Loci , Genome-Wide Association Study/statistics & numerical data , Thyroid Diseases/genetics , Thyrotropin/blood , Triiodothyronine/blood , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Thyroid Diseases/epidemiology , Thyroid Diseases/physiopathology , Thyroid Function Tests , Thyroid Gland/physiology
17.
Epidemiol Psychiatr Sci ; 28(5): 521-531, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29665879

ABSTRACT

AIMS.: Maternal mental disorders have been associated with the risk of attention-deficit/hyperactivity disorder (ADHD) in children. Within the context of a mother-child cohort, we examined whether maternal anxiety, depression and sleep disorders are associated with pre-school ADHD symptoms. METHODS.: The study included 3634 singletons from the Italian NINFEA (Nascita e INFanzia: gli Effetti dell'Ambiente') cohort. Maternal doctor-diagnosed anxiety, depression and sleep disorders before and during pregnancy were assessed from the questionnaires completed during pregnancy and 6 months after delivery. Mothers rated child ADHD symptoms at 4 years of age, according to the Diagnostic and Statistical Manual of Mental Disorders. Hyperactive-impulsive (ADHD-H), inattentive (ADHD-I) and total ADHD scores were analysed in the models adjusted for child's gender, first-born status, maternal age, education, alcohol consumption and smoking during pregnancy. RESULTS.: The total ADHD score at age 4 was associated with maternal lifetime anxiety (17.1% percentage difference in score compared with never; 95% CI 7.3-27.9%), sleep disorders (35.7%; 95% CI 10.7-66.5%) and depression (17.5%; 95% CI 3.2-33.8%). Similar positive associations were observed also for ADHD-H and ADHD-I traits, with slightly attenuated associations between maternal sleep disorders and child ADHD-I score, and maternal depression and both ADHD scores. All the estimates were enhanced when the disorders were active during pregnancy and attenuated for disorders active only during the pre-pregnancy period. CONCLUSIONS.: Maternal anxiety, depression and sleep disorders are associated with a relative increase in the number of ADHD-H, ADHD-I and total ADHD symptoms in preschoolers.


Subject(s)
Anxiety/epidemiology , Depression/epidemiology , Mothers/psychology , Sleep Wake Disorders/epidemiology , Adult , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/psychology , Child, Preschool , Cohort Studies , Female , Humans , Mothers/statistics & numerical data , Pregnancy , Surveys and Questionnaires
18.
Reprod Fertil Dev ; 31(4): 658-670, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30458920

ABSTRACT

Platelet-activating factor (PAF) is a well-known marker for embryo quality and viability. For the first time, we describe an intracellular localisation of PAF in oocytes and embryos of cattle, mice and humans. We showed that PAF is represented in the nucleus, a signal that was lost upon nuclear envelope breakdown. This process was confirmed by treating the embryos with nocodazole, a spindle-disrupting agent that, as such, arrests the embryo in mitosis, and by microinjecting a PAF-specific antibody in bovine MII oocytes. The latter resulted in the absence of nuclear PAF in the pronuclei of the zygote and reduced further developmental potential. Previous research indicates that PAF is released and taken up from the culture medium by preimplantation embryos invitro, in which bovine serum albumin (BSA) serves as a crucial carrier molecule. In the present study we demonstrated that nuclear PAF does not originate from an extracellular source because embryos cultured in polyvinylpyrrolidone or BSA showed similar levels of PAF in their nuclei. Instead, our experiments indicate that cytosolic phospholipase A2 (cPLA2) is likely to be involved in the intracellular production of PAF, because treatment with arachidonyl trifluoromethyl ketone (AACOCF3), a specific cPLA2 inhibitor, clearly lowered PAF levels in the nuclei of bovine embryos.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/physiology , Oocytes/metabolism , Platelet Activating Factor/metabolism , Animals , Arachidonic Acids/pharmacology , Cattle , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Culture Media , Embryo Culture Techniques , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Female , Humans , Mice , Oocytes/drug effects , Phospholipase A2 Inhibitors/pharmacology
19.
Mol Hum Reprod ; 24(11): 543-555, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30239859

ABSTRACT

STUDY QUESTION: What are the transcriptional changes occurring during the human embryonic stem cell (hESC) derivation process, from the inner cell mass (ICM) to post-ICM intermediate stage (PICMI) to hESC stage, that have downstream effects on pluripotency states and differentiation? SUMMARY ANSWER: We reveal that although the PICMI is transcriptionally similar to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell (PGC) markers, dependence on leukemia inhibitory factor (LIF) signaling, upregulation of naïve pluripotency-specific signaling networks and appears to be an intermediate switching point from naïve to primed pluripotency. WHAT IS KNOWN ALREADY: It is currently known that the PICMI exhibits markers of early and late-epiblast stage. It is suggested that hESCs acquire primed pluripotency features due to the upregulation of post-implantation genes in the PICMI which renders them predisposed towards differentiation cues. Despite this current knowledge, the transcriptional landscape changes during hESC derivation from ICM to hESC and the effect of PICMI on pluripotent state is still not well defined. STUDY DESIGN, SIZE, DURATION: To gain insight into the signaling mechanisms that may govern the ICM to PICMI to hESC transition, comparative RNA sequencing (RNA-seq) analysis was performed on preimplantation ICMs, PICMIs and hESCs in biological and technical triplicates (n = 3). PARTICIPANTS/MATERIALS, SETTING, AND METHODS: Primed hESCs (XX) were maintained in feeder-free culture conditions on Matrigel for two passages and approximately 50 cells were collected in biological and technical triplicates (n = 3). For ICM sample collection, Day 3, frozen-thawed human embryos were cultured up to day five blastocyst stage and only good quality blastocysts were subjected to laser-assisted micromanipulation for ICM collection (n = 3). Next, day six expanded blastocysts were cultured on mouse embryonic fibroblasts and manual dissection was performed on the PICMI outgrowths between post-plating Day 6 and Day 10 (n = 3). Sequencing of these samples was performed on NextSeq500 and statistical analysis was performed using edgeR (false discovery rate (FDR) < 0.05). MAIN RESULTS AND THE ROLE OF CHANCE: Comparative RNA-seq data analysis revealed that 634 and 560 protein-coding genes were significantly up and downregulated in hESCs compared to ICM (FDR < 0.05), respectively. Upon ICM to PICMI transition, 471 genes were expressed significantly higher in the PICMI compared to ICM, while 296 genes were elevated in the ICM alone (FDR < 0.05). Principle component analysis showed that the ICM was completely distinct from the PICMI and hESCs while the latter two clustered in close proximity to each other. Increased expression of E-CADHERIN1 (CDH1) in ICM and intermediate levels in the PICMI was observed, while CDH2 was higher in hESCs, suggesting a role of extracellular matrix components in facilitating pluripotency transition during hESC derivation. The PICMI also showed regulation of naïve-specific LIF and bone morphogenetic protein signaling, differential regulation of primed pluripotency-specific fibroblast growth factor and NODAL signaling pathway components, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTORC), as well as predisposition towards the germ cell lineage, further confirmed by gene ontology analysis. Hence, the data suggest that the PICMI may serve as an intermediate pluripotency stage which, when subjected to an appropriate culture niche, could aid in enhancing naïve hESC derivation and germ cell differentiation efficiency. LARGE-SCALE DATA: Gene Expression Omnibus (GEO) Accession number GSE119378. LIMITATIONS, REASONS FOR CAUTION: Owing to the limitation in sample availability, the sex of ICM and PICMI have not been taken into consideration. Obtaining cells from the ICM and maintaining them in culture is not feasible as it will hamper the formation of PICMI and hESC derivation. Single-cell quantitative real-time PCR on low ICM and PICMI cell numbers, although challenging due to limited availability of human embryos, will be advantageous to further corroborate the RNA-seq data on transcriptional changes during hESC derivation process. WIDER IMPLICATIONS OF THE FINDINGS: We elucidate the dynamics of transcriptional network changes from the naïve ICM to the intermediate PICMI stage and finally the primed hESC lines. We provide an in-depth understanding of the PICMI and its role in conferring the type of pluripotent state which may have important downstream effects on differentiation, specifically towards the PGC lineage. This knowledge contributes to our limited understanding of the true nature of the human pluripotent state in vitro. STUDY FUNDING/COMPETING INTEREST(S): This research is supported by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds University Ghent (BOF GOA 01G01112).The authors declare no conflict of interest.


Subject(s)
Human Embryonic Stem Cells/metabolism , Blastocyst/metabolism , Cell Line , Humans , Phosphatidylinositol 3-Kinases/metabolism , Principal Component Analysis , Sequence Analysis, RNA
20.
Hum Reprod ; 33(7): 1342-1354, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29796631

ABSTRACT

STUDY QUESTION: To what extent does a trophectoderm (TE) biopsy reliably reflect the chromosomal constitution of the inner cell mass (ICM) in human blastocysts? SUMMARY ANSWER: Concordance between TE and ICM was established in 62.1% of the embryos analysed. WHAT IS KNOWN ALREADY: Next generation sequencing (NGS) platforms have recently been optimised for preimplantation genetic testing for aneuploidies (PGT-A). However, higher sensitivity has led to an increase in reports of chromosomal mosaicism within a single TE biopsy. This has raised substantial controversy surrounding the prevalence of mosaicism in human blastocysts and the clinical implications of heterogeneity between the TE and ICM. STUDY DESIGN, SIZE, DURATION: To define the distribution and rate of mosaicism in human blastocysts, we assessed chromosomal profiles of the ICM and multiple TE portions obtained from the same embryo. We evaluated donated embryos with an unknown chromosomal profile (n = 34), as well as PGT-A blastocysts, previously diagnosed as abnormal or mosaic (n = 24). Our intra-embryo comparison included a total of 232 samples, obtained from 58 embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: Four embryo samples, including the ICM and three distinct TE portions, were acquired from good quality blastocysts by micromanipulation. Whole genome amplification (WGA), followed by NGS was performed on all embryo segments. Profiles were compared between samples from the same embryo, while the results from pretested blastocysts were further correlated to the original report. The embryos investigated in our untested group were obtained from good prognosis patients (n = 25), with maternal age ranging from 23 to 39 years. For the pretested embryo group, maternal age ranged from 23 to 40 years (n = 18). MAIN RESULTS AND THE ROLE OF CHANCE: We uncover chromosomal mosaicism, involving both numerical and structural aberrations, in up to 37.9% of the blastocysts analysed. Within the untested group, the overall concordance between the ICM and all TE portions was 55.9%. A normal ICM was detected in 20.6% of blastocysts for which at least one TE portion showed a chromosomal aberration. Conversely, 17.6% of embryos presented with mosaic or uniform abnormalities within the ICM, while showing normal or mosaic TE profiles. For the pretested blastocysts, the overall concordance between the ICM and all TE samples was 70.8%. However, 50% of embryos previously diagnosed with mosaicism did not confirm the original diagnosis. Notably, 31.3% of embryos with a mosaic aberration reported in the original TE biopsy, revealed a euploid profile in the ICM and all three TE samples. Taken together, concordance between the ICM and all TE portions was established in 62.1% of blastocysts, across both embryo groups. Finally, we could not observe a significant effect of age on embryo mosaicism (P = 0.101 untested group; P = 0.7309 pretested group). Similarly, ICM and TE quality were not found to affect the occurrence of chromosomal mosaicism (P = 0.718 and P = 0.462 untested group; P = 1.000 and P = 0.2885 pretested group). LARGE SCALE DATA: All data that support the findings of this study are available online in Vivar (http://cmgg.be/vivar) upon request. LIMITATIONS, REASONS FOR CAUTION: Evaluating biological variation in some instances remains challenging. The technological limitations of sampling mitotic errors that lead to mosaicism, as well as WGA artefacts, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our results highlight the complex nature of genetic (in)stability during early ontogenesis and indicate that blastocysts harbour a higher rate of chromosomal mosaicism than may have been anticipated. Moreover, our findings reveal an overall high diagnostic sensitivity and relatively low specificity in the context of PGT-A. This suggests that a considerable proportion of embryos are potentially being classified as clinically unsuitable. Ultimately, more precise quantification will benefit the clinical management of embryo mosaicism. STUDY FUNDING/COMPETING INTEREST(S): M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). J.T. and L.D. are supported by the agency for innovation through science (131673, 141441). B.H. and this research are supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF15/GOA/011). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Blastocyst , Genetic Testing , Mosaicism , Preimplantation Diagnosis/methods , Adult , Embryonic Development/physiology , Female , Humans , Maternal Age , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...